
How-to configure Sparnatural

date: 2023-10-20
Sparnatural version: 8.5.0

Introduction 3
Conventions 3
Prerequisites 3
Documentation files 3
Structure of the example ontology 4
Configuration spreadsheet 5

Protégé vs. spreadsheet 5
The Excel-2-RDF converter 5
If you use a Google spreadsheet 6
If you use a local spreadsheet 7

Filling-in the configuration spreadsheet 8
Adjusting the ontology URI and the prefixes 8

Ontology IRI 8
Metadata cleanup 9
Prefixes 9

Declaring classes 9
Declaring properties 11
Selecting property types (widgets) 14
Populating lists and autocomplete fields (datasources) 15

Using predefined datasources 15
Using predefined queries with your own properties 18

Declaring literal classes 19
How-to set some properties optional or negative 22

How-to map classes and properties to the underlying data model 25
General mechanism 25
Querying a sequence of properties (using a shortcut) 25
Querying inverse properties 27
Querying multiple properties in a single criteria 29
Querying a property recursively 30
Combining property paths 31
When the same property is used on multiple classes 31
Querying a subset of a class 32
Querying more than one class 33

Create a Multilingual configuration 33
Displaying labels in the result table 35

Default label properties 35
Multilingual default label properties 36

Advanced configuration 38
Advanced configuration : creating custom datasources 38
Advanced configuration : debugging custom datasources 40
Advanced configuration : setup tree widget datasource 42

Introduction

Welcome to this guide on how to configure Sparnatural !
The Sparnatural OWL configuration reference documentation lists the available annotations
and axioms available to configure Sparnatural. In this documentation you will learn how to use
these annotations concretely and define the classes, properties, widgets and datasources in
order to make your Sparnatural explorer as appealing as possible for your users.

Conventions

URIs are indicated like this.
Headers in the spreadsheet are indicated like this.

Important : this is an important note, pay attention !

Advanced note: this is explaining something advanced. Don’t worry if you don’t
understand all the details at first.

Tip: this is a useful and practical tip.

Prerequisites
1. Make sure you have followed the introductory “Hello Sparnatural” guide to setup your

environment to point Sparnatural to your triplestore and adjust the browser security
settings.

2. You must have a local spreadsheet editor, like Microsoft Excel.
3. You need to have a basic understanding of OWL ontologies.
4. For configuring your own datasource queries, you need to be proficient with SPARQL.

This is described in annex.
In addition, you can have the Protégé OWL editor installed, only if you want to browse the
ontology in Protégé, but this is not a requirement.

Documentation files

This guide comes with a set of files that you should have ready. Click on the links to download
them:

1. car.ttl : a sample OWL ontology describing car diagnostics.

http://docs.sparnatural.eu/OWL-based-configuration.html
http://docs.sparnatural.eu/how-to-configure/car.ttl

1 Other Sparnatural beginners happen to test the tool with cultural or library metadata, small foaf (“friend

2. car_instances.ttl : a few manually crafted instances of the sample ontology. Although
not strictly required, you should load these instances into your triplestore if you want to
follow along and test the example configuration against the dataset.

3. sparnatural-car-configuration.xlsx : the example Sparnatural Excel config file
4. sparnatural-car-configuration.ttl : the result of converting the Excel config file with

the Excel-2-RDF converter. This is the actual Sparnatural configuration file to pass in
the “src” attribute of the sparnatural HTML element, if you want to test it to see the final
result (but this is not required to follow this documentation).

Structure of the example ontology

For the purpose of this documentation we will use an example ontology, defined in car.ttl, and
described in the following diagram:

This is a simplistic representation of “On-board diagnostic” systems of cars : Vehicles,
identified by their Vehicle Identification Number (VIN) have a manufacturer; Diagnostics are
made on given vehicles at a certain date and a certain place, and can yield errors. An error
has a code, and a flag indicating if the error was already detected on the same vehicle. Error
codes are associated with symptoms (“Engine Misfire” or "Transmission Slipping") and
components (“Engine”, “Transmission”, “Brakes”). Components are hierarchically organized.
The ontology uses the prefix “odb” associated with the URI http://example.com/ontology/odb#.

Disclaimer : this “car” ontology sample is a fictitious one, which has only been created for thepurpose of testing maximum Sparnatural different functionalities. This ontology might not befully exact nor complete in a real car diagnostic industrial context ! 1

http://docs.sparnatural.eu/how-to-configure/car_instances.ttl
http://docs.sparnatural.eu/how-to-configure/sparnatural-car-configuration.xlsx
http://docs.sparnatural.eu/how-to-configure/sparnatural-car-configuration.ttl
http://example.com/ontology/odb#

of a friend”) structures using “knows” or other properties to develop a random mini-knowledge graph.Some even invented something with pets (owners, names, homes and sounds !), or relied on theStanford’s fictitious pizza ontology for Protégé demo.

Configuration spreadsheet

Protégé vs. spreadsheet

Sparnatural can be configured by an OWL ontology, and the “Hello Sparnatural” guide
explains how to use the Protégé OWL editor to start creating an OWL config ontology for
Sparnatural.
Although configuration in Protégé offers navigation and edition UI in trees of classes and
properties, and although semantic web practitioners are familiar with it, we must admit it ain’t
the fastest editing solution😊
No worries then ! Spreadsheet configuration we present in this document is faster and easier
to go and the result is the same : an OWL file that Sparnatural can read. The config can even
be edited live in case of online spreadsheets !
When using Protégé, you directly edit an OWL file:

The conversion of the spreadsheet into OWL relies on a generic Excel-to-RDF converter.
While when using a spreadsheet, the Excel-2-RDF converter is used:

https://protege.stanford.edu/ontologies/pizza/pizza.owl
https://protege.stanford.edu/ontologies/pizza/pizza.owl
https://protege.stanford.edu/ontologies/pizza/pizza.owl

The Excel-2-RDF converter

The code of the converter is open-sourced in the xls2rdf Github repository. The Excel-2-RDF
converter is available in different packagings:

1. an online REST service
2. an online form where you can upload your file
3. a command-line converter with its documentation
4. a Java library file to be integrated into your application

All these “packagings” behave the same way for the conversion of the spreadsheet in RDF.
For the purpose of following this documentation, we suggest either using an online Google
spreadsheet and rely on the online conversion service, or simply use a local file and upload it
through the online form, and save the resulting OWL file.
The detailed behavior of the Excel-to-RDF converter as to how the Excel file is interpreted is
out of scope of this guide, and is documented in the online converter service.

If you use a Google spreadsheet

Using a Google spreadsheet has the following advantages:
1. The configuration is “live” : while in the test phase, you can edit your spreadsheet,

refresh your Sparnatural HTML page, and it will be updated automatically.
2. Multiple persons can collaborate on the same config spreadsheet.

To initialize your configuration spreadsheet:
1. Make a copy of the configuration template
2. Your spreadsheet needs to be publicly visible. You need to share it with the "Anyonewith the link = Viewer" option. To do this, select the option Share.

In the next window, click the "General access" button. Select the "Anyone with thelink" option and press the "Done" button.

https://github.com/sparna-git/xls2rdf
https://xls2rdf.sparna.fr/rest/
https://skos-play.sparna.fr/play/convert
https://github.com/sparna-git/xls2rdf/wiki
https://github.com/sparna-git/xls2rdf/releases
https://github.com/sparna-git/xls2rdf/releases
https://xls2rdf.sparna.fr/rest/doc.html
https://docs.google.com/spreadsheets/d/1CtF8dTEOXEkNFLDRugOEco3LHmvAcEAds4thtX_fYpg/copy

After you close the window, copy the URL of the spreadsheet in your browser's
address bar.

3. Copy this URL in the cell B2 of the configuration file. Make sure the URL does not end
with “/edit#gid=xxxxxxx”, remove this part of the URL manually. The URL should look
like https://docs.google.com/spreadsheets/d/xxxxxxxxxx”

4. Save the content of cell B3 (in red) : this is the configuration URL that you can pass to
the “src” attribute of the <spar-natural> HTML element. You see it starts with
https://xls2rdf.sparna.fr : this is the online Excel-2-RDF conversion service that takes
the Google spreadsheet URL as a parameter. Each time your sparnatural page will
load, it will call this URL of the converter, which will in turn trigger the conversion of the
Google spreadsheet. The page is connected “live” to the spreadsheet.

Important : once your configuration is ready, do NOT leave Sparnatural pointing
to the live spreadsheet, otherwise your page will depend on the availability of the
online converter. Instead, save the result of the conversion to a local file “sparnatural-
config.ttl”, and adjust the “src” attribute of the <spar-natural> HTML element to point to
the local file.

If you use a local spreadsheet

Relying on Google services might not be applicable in every context. It is also possible to
design the configuration in a local spreadsheet, and convert it to an OWL file. The
configuration is not live in that case, and you will have to reconvert the file every time you
make a change in it.
To start a fresh configuration template:

1. Download the configuration spreadsheet template.
2. Edit the content as necessary
3. Go to the online converter at https://skos-play.sparna.fr/play/convert

https://docs.google.com/spreadsheets/d/xxxxxxxxxx.
https://xls2rdf.sparna.fr
https://docs.google.com/spreadsheets/d/1CtF8dTEOXEkNFLDRugOEco3LHmvAcEAds4thtX_fYpg/export?format=xlsx
https://skos-play.sparna.fr/play/convert

4. Upload the file in the field “in a local file on my computer”:

5. Check the box “Ignore SKOS post-processings on the data”:

6. Click on Convert.
7. Save the resulting file in the same folder as your Sparnatural page.
8. Adjust the “src” attribute of the <spar-natural> HTML element to point to this local file.

Reconvert the file the same way every time you make a change in it.

Filling-in the configuration spreadsheet

In this documentation we will work with a local spreadsheet. Download the spreadsheet
configuration template and save it in a local file. You will be working on this local file.

Important : throughout this documentation, we are referring to the columns of thespreadsheet by their header name. The header is the green line in bold:

Each column header corresponds to one configuration property as detailed in theSparnatural OWL configuration reference documentation. The header line does not need tobe at a fixed line; it is automagically detected, so don’t worry if you add or delete linesbefore this one.

https://docs.google.com/spreadsheets/d/1CtF8dTEOXEkNFLDRugOEco3LHmvAcEAds4thtX_fYpg/export?format=xlsx
https://docs.google.com/spreadsheets/d/1CtF8dTEOXEkNFLDRugOEco3LHmvAcEAds4thtX_fYpg/export?format=xlsx
http://docs.sparnatural.eu/OWL-based-configuration.html

Adjusting the ontology URI and the prefixes

You first need to adjust the URI of your ontology, as well as enter the prefixes used in your
knowledge graph.

Ontology IRI
Make sure you are on the “classes” tab of the configuration template, and edit the content of
cell B1. This cell needs to contain the URI of your configuration ontology. It is not very
important, unless you plan to share your configuration later. It is typically set to something like
“https://data.mydomain.com/sparnatural-config” or to a URL where Sparnatural will be
deployed, like “https://mydomain.com/sparnatural-page/sparnatural-config”.

Metadata cleanup
Cells B2 and B3 are only useful when working with online Google spreadsheets, so that the
configuration can be automated. We don’t need that in a local file, so simply delete the content
of cells B2 and B3. Keep them if you work with a Google spreadsheet.

Prefixes
You need to add additional prefixes from your ontology. Some prefixes are already declared :
“this”, “core” and “datasources”. Leave them as they are, and add prefixes in the same way in
the lines below. The column A always needs to contain the keyword PREFIX, column B is the
prefix name, and column C is the complete URI associated with the prefix.
Don’t hesitate to add new lines if you need to add many prefixes.

Example

Following the above, in our example configuration we set the Ontology IRI tohttp://example.com/sparnatural-page/sparnatural-config, delete the content of cells B2 andB3, and add our prefix “odb” on line 10, corresponding to the URIhttp://example.com/ontology/odb#

https://data.mydomain.com/sparnatural-config
https://mydomain.com/sparnatural-page/sparnatural-config
http://example.com/sparnatural-page/sparnatural-config
http://example.com/ontology/odb#

Declaring classes

Now you can start filling in the table with the classes of your ontology. Don’t hesitate to read
the guidelines in the green line above the body of the table.

● use the prefix you declared first to write down the URIs you have in the URI column ;
● then in the rdf:type column set owl:Class as the value of all your classes items ;
● set all your classes as core:SparnaturalClass in the column rdfs:subClassOf.
● then add the label of your classes, in the rdfs:label@xx column (these will appear as

the coloured named “blocks” in the query builder).

Advanced note: You can change the language of the label by editing the header row.
By default the template enables labels in english (rdfs:label@en), and french (rdfs:label@fr).
You can adjust the language code after the “@” sign. All the labels in a given column will be
tagged with this language. Make sure the language you use matches the “lang” parameter of
Sparnatural in your webpage. More on this in the section about multilingual configuration.
Next two columns allows to customize the display of the classes in the query builder :

● the core:faIcon (as for “FontAwesome icon”) column is where you can copy-paste the
code of a Font Awesome free icon you will choose on the website (e.g. “fa-solid fa-
car”) ;

● if you need some, you can also add tooltips in the core:tooltip@en column. This is not
mandatory. Depending on the use-case, the tooltip may provide more contextual

https://fontawesome.com/search?o=r&m=free

information to the user than only the definition from the ontology (e.g. “Select this entryif you want to search on xxx or yyyy”).
○ Similar to labels, you can adjust the language code of the tooltips by editing the

language code after the “@” symbol in the header line.

Tip: HTML markup is supported in tooltips.
● In column core:order^^xsd:integer set the display order of each entry to sort the

items in Sparnatural’s interface. The value must be an integer.

Tip: By using the labels combined with the order, you can group your classes in a
meaningful way, for example by setting a label that contains a hierarchy, such as “Actor >
Person” and “Actor > Organization”, and setting those 2 classes next to each other with their
order.

Example

Here in the example we have chosen to list all the existing classes of the model (you could
choose to have only some classes of your model, and not all). We took the same URIs as
the ones in the data model and added labels, icons, tooltips and order :

We decided that “Vehicle” was an important entry point and set its order to 1. Following this,
we can see it appears first in the query builder :

Note how the tooltip displays the definition from the ontology.

Declaring properties

Same process then to set the relations between the classes : jump to the “Properties” tab, 2nd
of the spreadsheet.

Tip: We suggest you organize this table by sections, each section corresponding to the
specification of the properties attached to one given class in your configuration. Make a
colored line for each section, with the name of the class as the title. Generally you are free to
arrange the spreadsheet as you want and use any formatting/color option you want. Lines that
do no contain a URI in column A will be ignored.
In this tab you will enter:

● URI column : URI of your property, typically using a prefix from your ontology ;
● in the rdf:type column always set the value to owl:ObjectProperty ;

Advanced note: even when configuring properties that actually correspond to
datatype properties, you always have to use owl:ObjectProperty, as for Sparnatural the
property needs to have a domain and a range that are classes.

● in the “rdfs:label@en” column set the label of the property to be shown in the
interface ;

○ adjust the language code of the labels by editing the language code after the
“@” symbol in the header line.

● the rdfs:subPropertyOf column is used to configure the way the values can be
selected in the query builder (see “widget” section below) : when you start designing

your configuration we suggest using core:ListProperty to obtain simple populated lists
using the data ; you can then refine this to other more appropriate values after.

● if needed a tooltip in the core:tooltip@en column ;
○ adjust the language code of the tooltips by editing the language code after the

“@” symbol in the header line.

And in order to relate each property to its domain class and its range class:
● the rdfs:domain is the Class to which the property is assigned (as the “subject” of the

assertion in an RDF graph) ;
● the rdfs:range is the Sparnatural Class to which the property points to (the “object” of

an RDF predicate);
These 2 columns must refer to a URI of a class from the first tab of your configuration
spreadsheet.

Advanced note: it is possible that a single property has more than one class as its
domain or its range. You can specify more than one class identifier in the rdfs:domain or
rdfs:range column, by separating them with a comma.

Example

Note how the table is organized with one section per class; note also how each property
refers to the class to which it is attached in the rdfs:domain column (in each “section” the
rdfs:domain is always the same), and the class to which it refers to in the rdfs:range
column.

As a result we can see - when index.html is refreshed - the object properties in italic appear
in the interface, between the classes items :

The tooltip of the property is displayed if it was added before in the configuration file.
We see a dropdown list appears when the range of the query (i.e. the “object” class of the
assertion) is chosen. As explained before, the way the selected values are to be displayed
depends on the type (rdfs:subPropertyOf) of the property, also referred to as the “widget”
of the property.

Selecting property types (widgets)

For now Sparnatural offers the following ways of selecting a value for a criteria :
Widget type (rdfs:subPropertyOf) Description

core:ListProperty(or core:LiteralListProperty whichis deprecated) dropdown list widget

core:AutocompleteProperty autocomplete search field

core:TreeProperty tree browsing widget, useful with some tree-shaped values,typically SKOS hierarchies, part-of hierarchies, etc;
core:MapProperty map selection widget (GeoSPARQL queries)
core:SearchProperty,core:StringEqualsProperty,core:GraphDBSearchProperty string search widget, searched as regex or as exact string

core:TimeProperty-Date,core:TimeProperty-Year date range widget (date or year precision)
core:BooleanProperty boolean widget (true/false, yes/no values…)
core:NonSelectableProperty no value selection (useful for 'intermediate' entities whose valuesdon’t need to be displayed)

All of them are already fully documented in the reference documentation for Sparnatural
widgets .
The choice of the widget is driven by how we want the user to select a value, and how many
different values are available (e.g. lists are good only when the values are relatively small,
typically less than 500 distinct values).

Example
Note how the properties in our configuration uses different kinds of widgets:

https://docs.sparnatural.eu/widgets.html
https://docs.sparnatural.eu/widgets.html

On Manufacturer, we have set the odb:name property as core:NonSelectableProperty,because we assume the user will never have to search or select a value for the name of aManufacturer.
On Vehicle, the odb:VIN property is set as an autocomplete. Being a long technicalidentifier, having an autocomplete will help user selecting a correct value. Theodb:manufacturer property uses a core:ListProperty because there is a limited list ofpossible car manufacturers, so using a list is convenient.
On Diagnostic, odb:diagnosticDate uses a date property as the values in the graph have
an xsd:date datatype.

Populating lists and autocomplete fields (datasources)

Using predefined datasources

ListProperty and AutocompleteProperty require a datasource to be populated correctly. For
that purpose use the datasources:datasource column of the Properties tab. The datasource
of a dropdown list populates the list, the datasource of an autocomplete property feeds the
autocomplete proposals. TreeProperty also requires two datasources; the configuration of tree
datasources is covered in annex.
In its most simple form, a datasource is a SPARQL query that will return some results.

Sparnatural comes with off-the-shelves datasources, in tab “sparnatural-config-core” of the
spreadsheet. Here you can find a list of preconfigured datasources corresponding to different
widget types for lists, autocomplete (search) and tree.

The predefined datasources are documented in the datasource documentation of Sparnatural,
but we give some simple indications to select the adequate one for your use-case:

● datasources beginning by “list” are for ListProperty, while datasources beginning by
“search” are for AutocompleteProperty.

● The identifier of the property indicates which property Sparnatural uses to display the
entry or search on it : rdfs:label, foaf:name, dcterms:title, schema:name,
skos:prefLabel

● List datasources come in 3 variants : “alpha” is pure alphabetical, count is sorted by
descending number of occurrences, “alpha_with_count” is alphabetical but displays the
number of occurrences in parenthesis.

● Search datasources come in 3 variants : “strstarts” looks for the string at the beginning
of the property, “contains” looks for the string anywhere in the property, “bifcontains” is
specific to Virtuoso and will look for the string anywhere in the property but as a
complete word/token.

A typical frequent choice to populate a list is the datasource “datasource:list_rdfslabel_alpha”
which will populate a list with the rdfs:label of the values, sorted alphabetically.

http://docs.sparnatural.eu/OWL-based-configuration-datasources.html

Advanced note: if you look at the SPARQL queries (e.g. by navigating to the URI of one
“query_list_xxxx”), you will notice that the default provided queries do not use the range class
as a criteria in the query, mostly for performance reasons. They assume that a given property
always refers to a single type of entity. If you have a property that can refer to multiple classes
as range, then you need to use one of the provided query that includes “with_range” in its
name (e.g. datasources:query_list_label_with_range_alpha), and inject the property name in
it (see following section)

Advanced note: if you don’t specify any datasource, Sparnatural will default to
datasources:list_URI_or_literal_alpha for lists and to datasources:search_URI_contains or
datasources:search_literal_contains (depending if the range class is marked as a literal or not,
see below). You will most probably never use these defaults and always specify a datasource.

Example

Both lines in grey below correspond to list properties (“core:ListProperty”) “hasSymptom”
and “hasComponent” respectively with “Symptom”and “Component” as range values,
where we wanted the rdfs:label in an alphabetical way to be displayed :

That gives us the following result when shown in Sparnatural’s interface :

http://data.sparna.fr/ontologies/sparnatural-config-datasources#query_list_label_alpha
http://data.sparna.fr/ontologies/sparnatural-config-datasources#query_list_label_alpha
http://data.sparna.fr/ontologies/sparnatural-config-datasources#search_URI_contains
http://data.sparna.fr/ontologies/sparnatural-config-datasources#list_URI_or_literal_alpha
http://data.sparna.fr/ontologies/sparnatural-config-datasources#search_literal_contains

We can see that we obtain an alphabetically-sorted list of labels here (instead of URIs).

Using predefined queries with your own properties

When your data model uses a property to label entities other than one of the 5 for which
preconfigured datasources exist, you can create your custom one, based on one of the
predefined query (alpha, count or alpha_with_count), in which your property will be “injected”.
To do so, go to “Datasources” tab of your spreadsheet and write down the URI of the new
datasource you want to create in column A, using the “this:” namespace, using a name as
explicit as possible. Then:

● in rdf:type column, always set the value datasources:SparqlDatasource
● In the datasources:queryTemplate column, pick one of the query from the

sparnatural-config-core tab you will copy-paste in the corresponding column. The
queries identifiers start with “datasources:query_list…” or
“datasources:query_search…”

● In the datasources:labelProperty column, enter the URI of the label property in your
data, either as a complete URI (surrounded by “<” “>”) or as a prefixed one. Your
custom datasource is created, and can refer to its URI from the “Properties” tab in the
“datasources:datasource” column.

Example

Two examples of custom datasources here in the screenshot : first one to populate a simple
list property with the odb:name label (alphabetical order), second one to trigger a “strstarts”search on VIN number labels for an autocomplete field property :

And this is what both custom datasources look like in the Datasources tab:

This way we obtain the following results on Sparnatural index page :
a dropdown list with particular labels instead of URIs :

an autocomplete field that could be filled in with the VIN numbers instead of the labels :

Declaring literal classes

You will have cases when a property is not an “object property” (i.e. a property followed by
another resource as a value), but a “data property”. There you may have to deal with literal
data as values, typically xsd:string, xsd:boolean, xsd:date or xsd:dateTime.
Sparnatural configuration allows you to create special classes dedicated to literal data in order
to enable the display of these particular values the same as other classes.
For that purpose you need to create a range class corresponding to the literal values you want
to display. The only two differences with other classes is that:

1. the rdfs:subClassOf column must have the value rdfs:Literal instead of the usual
core:SparnaturalClass (and don’t forget to add other attributes to the class : label,
icon, tooltip if needed etc.)

2. you will use the “this:” namespace as the URI of this class

Tip: Either you can declare a single class for all literal values, such as “this:Attribute”, so
that all literal properties are “grouped” under a generic “Attribute” entry, or you can choose to
decompose by datatype, such as “Text”, “Date”, “Boolean”, or you can even decompose by
properties, with one literal class per literal property (e.g. “Coverage” class corresponding to
“coverage” property), which imply some kind of duplication. The strategy to use depends on
how you would like things to be presented to your users.
The consequence of declaring a class as rdfs:Literal is that the generated SPARQL query will
never contain an rdf:type criteria for such objects, since they are literal values.
Remember that literal classes won’t appear in the initial classes menu as they will never be
used as the domain of other properties (only as range).

Example

Back to the Classes tab, a view of the this:Attribute class (blue line) that will be used as arange class each time a property is to display literal values : as the class doesn’t really exist
in the data, it is provided a “this” URI, and has the value rdfs:Literal in the rdfs:subClassOfcolumn :

This way the corresponding literal properties are all pointing to the this:Attribute class as a
range cf. rdfs:range column :

Then searching in the query builder for the VIN number of a Vehicle, that is a literal attribute,you can see the query when clicking on blue “Toggle SPARQL query” button :

Note how the query does *not* include an rdf:type criteria on this:Attribute.

How-to set some properties optional or negative

According to the SPARQL syntax, Sparnatural offers also a way to configure optional or
negative assertions, corresponding in SPARQL to OPTIONAL or negative “FILTER NOT
EXISTS” query patterns.
Both parameters can be activated/inactivated for each individual property in the Properties tab
of the spreadsheet. If you set “true” as the value of the column
core:enableOptional^^xsd:boolean or core:enableNegation^^xsd:boolean, a clickable
green arrow will appear in the query builder interface before the chosen property, enabling the
user to make the property criteria optional or negative.

Example

Here we can see in both last columns we have chosen to enable the Optional parameter foronly one row (the “already raised” property) and a few more ones to set the negativeparameter : theoretically you can apply both parameters to them all, but here we preferredallowing the option for relevant ones only (the choice depending on the existing data).
So regarding the optional parameter, the “already raised property” is the only one beingfacultative, so you may want to display optionally the existing values of it without excludingthe blank ones in your query.
The negatives ones which are set on “TRUE” (“VRAI”) are those for which a negative querywas judged meaningful from a user perspective.

https://www.w3.org/TR/sparql11-query/#neg-pattern
https://www.w3.org/TR/sparql11-query/#optionals
https://www.w3.org/TR/sparql11-query/#neg-pattern

The following screenshot shows an optional query pattern on the “already raised” propertywhich is optional (cardinality [0..1]). Let’s imagine we’d like to display all the results followingthis property no matter if actually there are some (or not). This enables to obtain a list ofresults even in case when the value isn’t there :

This one shows a negative pattern where we want to search for every component related to

an error code that does not have “Engine Misfire” as a symptom :

How-to map classes and properties to the underlying data

model

By default, you use the URI identifiers of the classes and properties of your data model as the
URI of classes and properties in your Sparnatural configuration. But you can also provide your
users with a slightly different view of the underlying graph structure. Typically you might want
to show them a simplified view of the more elaborate structure in the graph. To do this you will
use different URI identifiers for classes and properties in your Sparnatural configuration, that
will be remapped at query time to the underlying graph structure.

General mechanism

Declare the new URI identifiers using the “this:” namespace. This means that these identifiers
belong only to your configuration, not to your knowledge graph ontology.

The mapping is done through the core:sparqlString column in the “Classes” and “Properties”
tab. The string that you specify in the core:sparqlString annotation will be inserted “as is” in thegenerated SPARQL query, in place of the corresponding property or class identifier.

Warning : You need to be careful that the string you provide is a valid “piece of
SPARQL”, otherwise the query will be syntactically wrong. The mappings for properties shall
use the SPARQL property path syntax, please refer to this specification for all details.
basically the core:sparqlString value for a property can be any valid SPARQL property path.

Warning : values of the core:sparqlString annotation must not use prefixed URIs, only
full URIs, surrounded by “<...>”.
As an example, if your configuration uses a property URI “this:foo” that has a
core:sparqlString value “<http://bar>”, then this is the string “<http://bar>” that will be in the
final query, in place of “this:foo”.
Follow the “recipes” below that will guide you on how to write the content of the
core:sparqlString column depending on your use-case.

Querying a sequence of properties (using a shortcut)

The most frequent use-case for simplifying the user view is when two classes in your data
model are connected through one (or more) intermediate classes that you would like to hide in
Sparnatural. For example: “Persons live in City, and City is part of Country”. Suppose what
you would like to show to your users in the query builder is simply “Persons live in Country”,
hiding the “City” class.
You will do this with a “sequence path”, by putting the two properties you want to follow using
the “/” character. In our simple example this would be something like
“<http://example.com/lives_in>/<http://example.com/is_part_of>”. This means: “follow the
lives_in property, then follow the is_part_of property”.
Note that you can traverse more than two properties by appending the “/” character with a
third property, then the “/” with a fourth, etc.

Example

Let’s figure out, starting with the “Diagnostic” class of cars ontology, you would like to gostraightly to the Error Code, going through the “Error” item that doesn’t interest you thatmuch :

https://www.w3.org/TR/sparql11-query/#propertypaths

This shortcut is to be created as a new property in the configuration file, while specifying a
special sequence path in the core:sparqlString column of the spreadsheet : there you needto type the exact URI of both (or as many as) properties you want to go through betweenbrackets <>, each separated by the “/” character :

Then you can see the Error item is hidden in that case in the query builder : the Error Codeappears to be directly linked to the Diagnosis, so that we can directly obtain the list of ErrorCodes corresponding to a given Diagnosis :

Querying inverse properties

Another frequent use-case where the user view differs from the underlying graph structure is
when you want to provide the user with an inverse relationship that does not exist in the data.
For example if you have “City is part of Country” in your graph, you may want to provide the
user with the ability to navigate with “Country contains City”.
You will do this with an “inverse path”, by prefixing the property URI with the “^" character. In
our example this would be “^<http://example.com/is_part_of>”. This means “follow the
is_part_of property in the inverse direction”.

Example

In cars ontology, starting from the Vehicle, searching for a Diagnostic isn’t possible if werefer to the diagram : the property goes from Diagnostic —to—> Vehicle indeed. Here wecreate the “this:hasDiagnosis” property, that goes from Vehicle —to—> Diagnostic, and is
mapped to ^<http://example.com/ontology/odb#analysedVehicle>

The property now appears in the query builder note the caret “^” in the SPARQL query) :

Querying multiple properties in a single criteria

This is to be used if you would like the user to query more than one property at the same time.
This can be useful if you would like to provide a search field (core:SearchProperty) that will
search in label + description. This can also be used if two classes are connected by more than

one possible property and you want to search all of them, as “Person is friend with Person”
and “Person is a colleague of Person”; you may want to provide your user with “Person knowsPerson”, and “knows” would search for both “is friend with” and “is colleague of”.
You will do this with an “alternative path”, by joining all properties URI with the “|" character. In
our example this would be
“<http://example.com/is_friend_of>|<http://example.com/is_colleague_of>”. This means
“follow either the is_friend_of or is_colleague_of properties”.
Example

To illustrate this on the Component class, we decided to query both label and component
code in one unique field: you can see the new property this:labelOrCode has been createdtherefore with a special ”|” SPARQL string to combine both properties behind a single one :

We can see in the two following screenshot that a search for either a code or a label ofcomponent will work:

Querying a property recursively

This is to be used in combination with a tree property (core:TreeProperty). This is useful
when you would like the user to query recursively and transparently into a complete “branch”
of entities related with a hierarchical link (typically skos:broader or dcterms:isPartOf).
Most of the time, when you provide a tree widget, the implicit expectation from the user is that
when she selects a node in the tree, then the query would also search for all children of that
node.
For example if you have “Place is part of Place” in your graph, with places organized as a tree,
if the user searches for “Restaurant located in Paris”, then she would expect to receive
restaurants also located in places that are part of Paris, such as “17eme arrondissement”.

You will do this with a combination of “sequence path” (the “/” operator seen above) and “zeroor more path”, by appending a “*” symbol after the property URI. In our example this would be
“<http://example.com/is_located_in>/<http://example.com/is_part_of>*”. This means:
“follow the is_located_in property, then follow the is_part_of property recursively (until youreach the selected node, which in our example would be Paris)”; In other words “select allrestaurants with a is_located_in property that points to a place that is linked to Paris with anynumber of is_part_of properties”.

Combining property paths

It is possible to combine the sequence operator (“/”), inverse operator (“^”), alternative
operator (“|”), and zero-or-more operator (“*”). A typical use-case is to combine inverse with a
sequence operator to traverse properties in the inverse direction in a sequence path.

Example

In our “Car” ontology we could imagine a direct link between a “Vehicle” and the “ErrorCode” that were diagnosed on this Vehicle, which would give the property path^<http://example.com/ontology/odb#analysedVehicle>/<http://example.com/ontology/
odb#hasResults>/<http://example.com/ontology/odb#hasErrorCode>

When the same property is used on multiple classes

It may happen that the same property is used on more than one class in the data model. A
typical situation is when rdfs:label is used to label many entities in the data model. In that
case, and in order to keep the configuration of each entity separated from the others, it is
advised to create one specific line in the “this:” namespace for each entity, and map them to
the same property in the core:sparqlString column. This way, each line can be configured
differently and have different labels, tooltips or widget.
For example if both foaf:Person and foaf:Organization can have the property foaf:name, you
can declare this:personName with rdfs:domain foaf:Person, this:organizationName with
rdfs:domain foaf:Organization, and map them both to <http://xmlns.com/foaf/0.1/name>

Tip: It is even possible to *always* use the “this:” namespace when creating the
properties in the configuration, and *always* map them to an underlying property using the
core:sparqlString column. This has the advantage of not mixing your ontology namespace

with the “this:” namespace in the configuration, but the disadvantage is that you need to
always fill in the core:sparqlString column.

Example

In the Cars ontology, both Symptoms and Components can have rdfs:label. We chose todeclare two separate lines “this:symptomLabel” and this:componentLabel, each mapped to<http://www.w3.org/2000/01/rdf-schema#label>. The label of the property (“label” in english,“a pour libellé” in French) remains the same, so it is identical from the user point of view;however tooltips can be different in each case, for example.

Querying a subset of a class

This is a less frequent use-case. It can be useful if your graph has very generic classes, but
you want to show more specific and meaningful entries to your users. A good case is when
you use SKOS Concepts, organized in different Concept Schemes.
For example if you have the class “Document” in your graph, but you want to show to the user
different kinds of Documents, such as “Reports”, “Articles” or “News Item”, based on a “type”
property of the Document instances.
You will do this by specifying a custom class URI in your configuration and mapping it to a
SPARQL string indicating “Document with type = Report”, which would translate into
“<http://example.com/Document>; <http://example.com/type>
<http://example.com/Report>”
Note that this is a mapping of a class, not a property, thus to be defined in the “Classes” tab,
in the “core:sparqlString” column.
Example

http://www.w3.org/2000/01/rdf-schema#label
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://example.com/type
http://example.com/Document
http://example.com/Report

2 Note however that the few hardcoded labels of Sparnatural exist in French and English only.

This example is not taken from the “Car” ontology that does not contain such a use-case.
Here, originally only the skos:Concept class is used in the graph.
Note how the class from the config “Product”, using the “this:” namespace, is aligned to allSKOS Concepts which are in the scheme Product, by means of the SPARQL string
“<http://www.w3.org/2004/02/skos/core#Concept> ;
<http://www.w3.org/2004/02/skos/core#inScheme>
<https://data.example.org/authority/product>”
Note how the Keywords are all the Concepts that are in the scheme Thesaurus, by means
of the SPARQL string “<http://www.w3.org/2004/02/skos/core#Concept> ;
<http://www.w3.org/2004/02/skos/core#inScheme>
<https://data.example.org/authority/thesaurus>“

Querying more than one class

This is a less frequent use-case. It can be useful if your graph has specific classes, but you
want to show more generic entries to your users.
For example if you have the classes “Person” and “Company”, but you want to show to the
user a single entry like “Actors”, encompassing both persons and companies.
You will do this by specifying a custom class URI in your configuration and mapping it to a
SPARQL string indicating “Person or Company”, which would translate into “?type
VALUES ?type { <http://Person> <http://Company>}” .
Note that this is a mapping of a class, not a property, thus to be defined in the “Classes” tab,
in the “core:sparqlString” column.

Create a Multilingual configuration

Sparnatural is multilingual by nature and can display the labels and tooltips from its
configuration in multiple languages, if they are provided in the configuration. The “<spar-
natural>” HTML element contains a “lang” attribute that indicates which language should be
used to select the labels and tooltips to display2. That attribute can be adjusted by a control in

https://data.example.org/authority/product

the HTML page (out of scope of Sparnatural and of this documentation), typically a language-
selection dropdown.
If you want to provide your users with a multilingual configuration you have to add additional
columns in your configuration files:

● In the “Classes” tab:
○ add more “rdfs:label@xx” columns and adjust the language tag in the header

to populate the labels of classes in different languages
○ add more “core:tooltip@xx” columns and adjust the language tag in the header

to populate the tooltips of classes in different languages
● In the “Properties” tab, duplicate the same columns “rdfs:label@xx” and

“core:tooltip@xx” for the labels and tooltips of the properties.

Advanced note: Sparnatural is also configured with a “defaultLang” parameter. This
default language is the language in which the knowledge graph is supposed to always have a
label for all entities. This is meant to deal with situations where some entities do have a label
in the user preferred language, and others don’t, but will have a label in the default language.
The default label can be returned to display a label to the user.

Example

Classes and properties labels and tooltips can be translated in as many languages aswished just by adding the translations in an “@xx” column for each : here the classes tab,
translated in French, rdfs:label@fr and core:tooltip@fr :

here the properties one, rdfs:label@fr and core:tooltip@fr again :

This makes it possible to have a Sparnatural interface in French, by adjusting the “src”attribute of the <spar-natural> element in the HTML page to “fr”:

Displaying labels in the result table

Default label properties
By default, when triggering a query, you will get a list of URIs as result. URIs are not very nice
to display for users, who will want to see a clickable human-readable label instead.
Sparnatural allows to indicate what is the label property to use when running the query and
displaying the results in the table. To do this, populate the “core:defaultLabelProperty”
column in the “Classes” tab, with the URI of one of the properties from the “Properties” tab.
This property then becomes the default label property of this class and will be automatically
fetched whenever this class is selected as a column in the result set, with the “eye” icon of an
orange arrow.

The property you refer to can be any property from the Properties tab. In practice it will usually
correspond to a property that has in its range a Class that is indicated as an rdfs:subClassOf
of rdfs:Literal because it is a Literal property. Typical default label properties correspond to
rdfs:label, foaf:name, skos:prefLabel, etc.
The property you refer to can use the “this:” namespace and be mapped to an underlying
SPARQL property path in its core:sparqlString column.
Concretely, this means the following: when selecting an entity from the query builder, for
example “Person”, Sparnatural will generate a variable “?Person_4”. If the “Person” class is
annotated with “core:defaultLabelProperty” that points to a property in your configuration,
Sparnatural will automatically return the variable “?Person_4_label” populated with the
property.

Advanced note: you can mark the default label property as optional, with
core:enableOptional. Sparnatural will honor this by always returning the xxxx_label in the
query and populating it only when it is known (as opposed to not returning the row if the
property is missing on an item).

Tip: sometimes the default label property for a class is available to the user as a
property that can be searched on. For example Persons might have “name” as their default
label property, and you want the user to search on person names with an autocomplete
widget. But sometimes you want the default label property to be hidden in the query builder,
and you simply need it to be fetched in the result table. In that case, proceed exactly as
normal, except that you don’t set an rdfs:domain on the property used as the default label
property. Leave the rdfs:domain column empty for that property. Properties without domain
are still part of the configuration but hidden in the query builder.

Example

In this case we decided to display the Manufacturer’s names by using the odb:name
property as a default label, the VIN number for the Vehicles (odb:VIN), the
this:symptomLabel for Symptoms and the this:componentLabel for the Components. This
is specified in the core:defaultLabelProperty column :

The result in the query builder is much more explicit and user-friendly than simple plainURIs !

Multilingual default label properties

By default, when fetching the default label property, Sparnatural will not apply any language
filter; so multiple values will be retrieved in case the label property holds multilingual values. In
order to instruct Sparnatural to retrieve the default label property only in the current user
language, set the core:isMultilingual column of that property to true.
Example

In the example data of the cars ontology, labels of components are multilingual, e.g.
“Engine”@en and “Moteur”@fr. They are declared in the this:componentLabelconfiguration property. In order to indicate to Sparnatural that only the label in the current
user language should be retrieved, we set “TRUE” in the core:isMultilingual column:

We can see that only French labels are retrieved in the result table, when Sparnatural is set

to French:

Advanced configuration

Advanced configuration : creating custom datasources

Creating a custom datasource to populate a list property or an autocomplete property is
possible by providing your custom SPARQL query. To do this you need to be proficient with
SPARQL.
To create your custom datasource, go to the “Datasources” tab of the configuration file, and:

● Add a line, with your datasource URI in column A, in the “this:” namespace
● in column rdf:type, set the value datasources:SparqlDatasource
● in column datasources:queryString, enter the SPARQL query, including all its

prefixes.
● then you can refer to your datasource from the “datasources:datasource” column of

the “Properties” tab.
The datasources documentation explains the rules you need to follow to create your own
SPARQL datasource. Please refer to this documentation for details. To sum it up, your query:

● must return 2 variables ?uri and ?label
● can take advantage of special variables that will be passed by Sparnatural before the

query is sent, such as $domain with the class selected at the beginning of the criteria,
$range with the class selected at the end, $property with the property selected, $lang
with current user language, etc. You don’t *have to* use all of them.

http://docs.sparnatural.eu/OWL-based-configuration-datasources.html#your-own-sparql-query-lists--autocomplete
http://docs.sparnatural.eu/OWL-based-configuration-datasources.html#your-own-sparql-query-lists--autocomplete

If you don’t see any results in your dropdown list populated with a custom query, refer to the
next section to know how to debug the query.

Example

Here we propose to set a custom datasource for odb:hasComponent property. Let’simagine it would be created using a concatenation of component code + component label.To do so we first write the SPARQL query that will be sent to the system to get the info, thenwe can embed it in a new “this” datasource (tab “Datasources” of Sparnatural config sheet) :

The details of the SPARQL query is beyond the scope of this documentation, please simplynote that a/ it is using “magic variables” $domain, $property, $lang that are replaced atruntime by Sparnatural with the corresponding values in the criteria being built (see the
Sparnatural datasource documentation) and b/ note the BIND(CONCAT(...) AS ?label) linethat is doing the actual concatenation of the code with the name, which is returned in theresult set.
Next step is modifying property’s datasource itself with the URI of the new datasource :

Then testing the query in the query builder to check that the query works well :

Advanced configuration : debugging custom datasources

Most of the time a custom datasource query will not work the first time and a little debugging is
necessary. There are three main reasons a custom datasource is not working:
Case 1 : the SPARQL query is syntactically wrong
UI Symptom : the loader keeps running, the list is not populated.

Console Symptom : Check in your console to see if there is a SPARQL parsing error
message, like so:

(in our case here, a missing dot in the SPARQL).
How to fix it : fix your SPARQL query, make sure you edit it in a tool with syntax checking.
Case 2 : The query to the endpoint failed (the server is unreachable, or there is a CORSissue, etc.)
UI Symptom : the loader keeps running, the list is not populated.

Console Symptom : you will see a network query failing in the network console:

(in our case here, we simulated a CORS issue).
How to fix it : check more in detail why the network call failed. This could be for a security
reason, a CORS reason, or another reason on the server that would return an HTTP 500
error.
Case 3 : The SPARQL query is syntactically correct and was successfully executed, butreturned no results.
UI Symptom : the loader stops, the list is empty

Console Symptom : you will see the SPARQL HTTP request to populate the list was sent and
was successful, but has returned no “bindings” in its response

How to fix it : You must understand why the query does not return the expected result. To do
that you need to fetch it from the HTTP request in the console:

Copy the query, paste it in your triplestore SPARQL interface, and work on it to understand
why it does not return the expected results.

Warning : remember that this is the final query being sent, after all “magic variables”
have been replaced by Sparnatural with their final values. Please refer to the datasource
documentation for explanations on these variables. When you understand why the query does
not work, remember to replace all fixed variables back with their magic variable name (e.g.
$domain, $lang, etc.)

Advanced configuration : setup tree widget datasource

http://docs.sparnatural.eu/OWL-based-configuration-datasources.html#your-own-sparql-query-lists--autocomplete
http://docs.sparnatural.eu/OWL-based-configuration-datasources.html#your-own-sparql-query-lists--autocomplete

A tree widget requires two datasources : one to get the roots of the tree, and one to get the
children of a node that is unfolded. This is set with the datasources:treeRootsDatasource
and datasources:treeChildrenDatasource columns respectively, in the “Properties” tab.
These two columns are useful only when the property is a core:TreeProperty, you can ignore
them otherwise. The datasource documentation gives the details of the existing default tree
datasources and how to create a new tree widget datasource. Please refer to this
documentation for details.

Example

In Sparnatural car configuration, the class odb:ErrorCode has a property
odb:hasComponent, which refer to car components that re structured in a hierarchized
manner. Therefore we can set this property as a core:TreeProperty with two custom tree
datasources, one identified with this:tree_root_Component and one identified with
this:tree_children_Component, which serve respectively to fetch the roots and the childrenof a node.

Selecting the core:TreeProperty widget from properties tab, these two datasources arethen referred to like so :

http://docs.sparnatural.eu/OWL-based-configuration-datasources.html#preconfigured-datasources-for-a-treeproperty
http://docs.sparnatural.eu/OWL-based-configuration-datasources.html#your-own-sparql-query-tree
http://docs.sparnatural.eu/OWL-based-configuration-datasources.html#preconfigured-datasources-for-a-treeproperty

This way the corresponding tree is displayed in the query builder :

Note how 1/ some items in the component tree are greyed out because no error codesaffect them and 2/ some items in the component tree cannot be unfolded as they have nochildren. Those two informations (the fact that a node has children and the fact it is notreferenced as a value) are computed by the SPARQL queries used as datasources,
respectively in the ?hasChildren variable and the ?count variable.
The result listed is the only error code affecting the component selected in the tree upabove.

